Minimum end time policies in batch, chain addition polymerizations

B. Boorga Rao and R. D. Mhaskar

Department of Chemical Technology, University of Bombay, Matunga, Bombay, India (Received 3 April 1981)

INTRODUCTION

Production of polymers within minimum possible time without sacrificing the physical properties can be achieved by changing certain control variables in a 'systematic manner'. The control variables generally considered in the polymerization reactions are temperature and initial initiator concentration. Pontryagin's maximum principle¹ is an effective tool in deciding the optimum values of these control variables.

Ray et al.² applied the maximum principle for deciding the optimal control variables for a given monomer conversion and average molecular weight without considering gel effect. Later, Biesenberger et al.³ considered the gel effect, but did not specify the optimal initial initiator concentration while deciding the optimum temperature/time cycle. Chen and Jeng⁴ have filled this gap in the model and verified the model experimentally considering the system of styrene polymerization.

The polymerizations of methylmethacrylate and vinyl acetate are also generally done by batch process⁵. Hence, the minimum end time problem is studied for these systems for a wide range of number average chain lengths.

KINETIC MECHANISM AND STATE EQUATIONS

Radical chain polymerization has generally been represented by the following mechanism⁶.

Initiation:

$$I = \frac{k_d}{k_d} \rightarrow 2R \qquad R = 2fk_d I^n \tag{1}$$

$$R + M \xrightarrow{k_i} P_1 \tag{2}$$

Here, f is the initiator efficiency.

Propagation:

$$P_x + M - \frac{k_p}{k_p} P_{x+1} \tag{3}$$

Termination:

$$P_x + P_y - \frac{k_{td}}{M_x + M_y}$$
 (Disproportionation) (4)

$$P_x + P_y \xrightarrow{k_{tc}} M_{x+y}$$
 (Combination) (5)

Here, the chain transfer reaction is neglected and the kinetic constants are assumed to be independent of chain length.

In radical chain polymerization, there is an

autocatalytic effect, which is termed the gel effect⁶. This effect is due to increased viscosity as monomer conversion increases and it retards the rate of termination. This effect is taken into account by the gel effect function³ g(m) which gives the relation between k_t and monomer conversion (m).

$$k_t = k_{tc} + k_{td} = k_{to}(y)g^2(m) = A_t \exp(-E_t y)g^2(m)$$
 (6)

where

$$g = g(m)$$
 as $m > m_1$ (with gel effect)
= 1 as $0 \le m \le m_1$ (without gel effect)

 m_1 is the monomer conversion above which the gel effect becomes significant.

Adopting the method of moment generating functions³, the equations for the 3 state variables namely, initiator conversion (c), dimensionless zeroth and first moments of the molecular weight distribution (ξ_0, ξ_1) can be written as

$$\frac{\mathrm{d}m}{\mathrm{d}t} = \frac{\mathrm{d}\xi_1}{\mathrm{d}t} = k_1 (1 - c)^{0.5n} \frac{(1 - m)}{q} + 2ak_2 (1 - c)^n \tag{8}$$

$$\simeq k_1 (1 - c)^{0.5n} \frac{(1 - m)}{g} \tag{9}$$

(by making long chain approximation)

$$\frac{\mathrm{d}c}{\mathrm{d}t} = k_2 (1 - c)^n \tag{10}$$

$$\frac{d\xi_0}{dt} = (2 - v)ak_2(1 - c)^n \tag{11}$$

with the initial conditions

$$m(0) = c(0) = \xi_0(0) = 0$$
 (12)

The number average chain length is given by

$$X_n = m/\xi_0 \tag{13}$$

BEST ISOTHERMAL POLICY

Following a procedure similar to that adopted by Chen and Jeng⁴ we get the following expressions for the control variables, I_0 and T, and for the end times, t_f , for the isothermal polymerization.

$$\frac{E_2}{2(E_2 - E_1)} \ln \left(1 - \frac{B}{\gamma I_0} \right) + \frac{B/\gamma I_0}{\left(1 - \frac{B}{\gamma I_0} \right)^{0.5}} = 0 \tag{14}$$

where

$$\gamma = \left(2 - \frac{k_{tc}}{k_t}\right); \quad B = M_0 m^* / f X_n^*$$

$$y = \frac{1}{R_g T} = \frac{1}{(E_2 - E_1)} \ln \left[\frac{W}{2DI_0^{0.5} \left[1 - \left(1 - \frac{B}{\gamma I_0}\right)^{0.5}\right]} \right]^{(15)}$$

where

$$W = \int_{0}^{m} \frac{g}{1 - m} \, \mathrm{d}m \tag{15a}$$

$$D = \frac{A_1}{A_2} (2f)^{0.5}$$
 (15b)

and

$$t_f = -\frac{1}{A_2 \exp(-E_2 y)} \ln \left(1 - \frac{B}{\gamma I_0} \right)$$
 (16)

The initiator conversion (c) can be obtained by solving equation (14) for $B/\gamma I_0(=c(t_f))$ which is constant for a given polymer⁴. The value of the best I_0 is substituted in equation (15) to obtain the best temperature and then t_f is calculated from equation (16).

OPTIMAL TEMPERATURE POLICY

The maximum principle is applied to obtain the optimal temperature profile in a manner similar to that of Chen and Jeng4. According to the maximum principle the Hamiltonian, H, should be minimum if the objective function is to be minimum⁷ and this minimum value is equal to zero if t_f is not specified¹.

Objective function: $F = \{t_f\}$

$$H = 1 + \lambda_1 k_1 (1 - c)^{0.5n} \frac{(1 - m)}{g} + \lambda_2 k_2 (1 - c)^n + \lambda_3 (2 - v) a k_2 (1 - c)^n$$
(17)

where $\lambda_1, \, \lambda_2$ and λ_3 are the adjoint variables which are given by

$$\frac{\mathrm{d}\lambda_1}{\mathrm{d}t} = -\frac{\partial H}{\partial m} = -\lambda_1 k_1 (1 - c)^{0.5n} \frac{\mathrm{d}}{\mathrm{d}m} \left(\frac{1 - m}{q}\right) \tag{18}$$

$$\frac{\mathrm{d}\lambda_2}{\mathrm{d}t} = -\frac{\partial H}{\partial c} = \frac{n}{1-c} \left[\lambda_1 k_1 \frac{(1-m)}{2g} (1-c)^{0.5n} + \lambda_2 k_2 (1-c)^n \right]$$

$$+\lambda_3(2-v)ak_2(1-c)^n$$
 (19)

$$\frac{\mathrm{d}\lambda_3}{\mathrm{d}t} = -\frac{\partial H}{\partial \xi_0} = 0 \tag{20}$$

with the boundary conditions

$$\lambda_1$$
 undefined
$$\lambda_2(t_f) = 0 \tag{21}$$

$$\lambda_3$$
 undefined

The boundary conditions on the state variables are:

$$m(0) = 0$$
 $m(t_f) = m^*$
 $c(0) = 0$ $c(t_f) = \text{unknown}$ (22)
 $\xi_0(0) = 0$ $\xi_0(t_f) = m^*/X_n^*$

The following necessary conditions are obtained from the maximum principle.

$$H = 0 \tag{23}$$

$$\frac{\partial H}{\partial y} = 0 \tag{24}$$

$$\frac{\partial^2 H}{\partial y^2} > 0 \quad \text{for } y = y_s \tag{25}$$

Thus, differentiating equation (17) with respect to y and applying H = 0, we get

$$\frac{\partial H}{\partial y} = (E_2 - E_1)\lambda_1 k_1 (1 - c)^{0.5n} \frac{(1 - m)}{q} + E_2 = 0 \quad (26)$$

$$\frac{\partial^2 H}{\partial v^2} = E_1 E_2 > 0 \tag{27}$$

The solution of equation (26) gives the optimum temperature. Equation (26) contains one unknown, λ_1 , which is obtained by integrating equation (18).

$$\lambda_1 \frac{(1-m)}{g} = \text{constant} = L, \text{ (for example)}$$
 (28)

Substituting equation (28) in equation (26) and solving for y, we get

$$y_s = -\frac{1}{E_1} \ln \left[\frac{-E_2}{A_1 (E_2 - E_1) \lambda_1 (1 - c)^{0.5n}} \cdot \frac{g}{(1 - m)} \right]$$
 (29)

The following constraints on temperature could exist.

if
$$T_s > \bar{T}$$
, $T = \bar{T}$
if $T_s < \underline{T}$, $T = \bar{T}$
if $\bar{T} \geqslant T_s \geqslant T$, $T = T_s$ (30)

where \bar{T} and T are the upper and lower limits on temperature.

Optimal initial initiator concentration (I₀)

if

The application of maximum principle to fine optimum I_0 requires finding the expression for $\partial H/\partial I_0$. Thus,

$$\frac{\partial H}{\partial I_0} = \frac{n}{I_0} \left[-1 - \frac{\partial H/\partial y - E_2}{2(E_2 - E_1)} \right]$$
 (31)

If the temperature is not constrained $\partial H/\partial v = 0$. Also, the value of $E_2/2(E_2-E_1)$ is observed to be greater than 1 for the systems under study, and hence, we get $\partial H/\partial I_0 > 0$, indicating that for the Hamiltonian to be minimum, I_0 should also be minimum. Hence, the optimum I_0 takes its lower limit I_0 . However, if I_0 is decreased the conversion of the initiator increases approaching unity at a certain value of I_0 . Thus the optimal I_0 is that which results in dead-end polymerization.

Even when the temperature is constrained, the contribution of the term $\partial H/\partial y$ will be small compared to that of E_2 and hence, we can come to the same conclusions.

NUMERICAL CALCULATIONS

We will consider the following systems:

- (1) Bulk polymerization of methylmethacrylate (MMA) initiated by 2,2-azoisobutyronitrile (AIBN).
- (2) Bulk polymerization of vinyl acetate (VAC) initiated

The relevant data used for the two systems are given in Table 1. The following numerical procedures are adopted. Best Isothermal Policy:

- (1) Equation (14) is solved by Newton-Raphson search technique for obtaining the value of $c(t_f)$ and hence the
- (2) Equation (15a) is numerically integrated by 4th order Runge-Kutta algorithm to get the value of W^* .
- (3) These values are substituted in equation (15) to get the best temperature.

Optimal Temperature Policy:

The procedure is similar to that adopted by Chen and Jeng⁴. 4th order Runge–Kutta algorithm is used to solve equations (9)-(11).

RESULTS AND DISCUSSION

Best isothermal policy (BIP)

The values of the control variables (T and I_0) obtained from BIP are given in Table 2 and also plotted in Figure 1. It can be observed from the Figure that there is a linear relationship between X_n^* and I_0 and between X_n^* and t_f when plotted on a log-log scale. Lower values of I_0 are required for larger chain lengths whereas more reaction times are demanded. The temperature decreased with X_n^* Thus if a polymer product of higher chain length is required, the reaction temperature should be lower and the reaction time should be more.

Optimal temperature policy (OTP)

Figure 2 gives the optimal temperature profiles for methylmethacrylate system for $X_n^* = 5000$ for various values of I_0 . It can be seen that the temperature rise with respect to time should be more as the I_0 value is decreased. At larger values of I_0 , the optimal temperature should be maintained as nearly constant. As I_0 is decreased the slope of the optimum temperature profile is increasing at a slower rate in the initial part of the profile and at a higher rate in the latter part of the profile. The profile labeled 1 is the optimum temperature profile at I_{0u} , the optimum value of I_0 . The curve labelled 2 is the optimum temperature profile at I_{0b} , the best value of I_0 which is obtained from BIP. I_{0b} is not the optimum I_0 and the I_{0b} is less than the I_{0a} . It can be observed from Figure 3 that as I_0 is decreased, the time

Table 1 Kinetic data of MMA and VAC

Methylmethacrylate ³		Vinyl acetate ⁵ ,8,9		
A_p , s ⁻¹ mol ⁻¹	5.1 x 10 ⁶		3.2 × 10 ⁷	
4_{t}^{-1} i s ⁻¹ mol ⁻¹	7.8 x 10 ⁸		3.7×10^9	
$4_{d_i} \mid s^{-1} \mod^{-1}$	1.58 x 10 ¹⁵		7.9×10^{16}	
$\overline{\epsilon}_p$, cal mol $^{-1}$ K $^{-1}$	6300		3130	
t , cal mol $^{-1}$ K $^{-1}$	2800		1460	
d , cal mol $^{-1}$ K $^{-1}$	30800		34000	
	0.0		0.0	
	0.6		0.6	
(m)	1.0	for $0 \le m \le 0.15$	1	
	1		for $0 \le m \le 0.5$	
		——— for $0.15 < m \le 0.6$	$(1 + 1.767m + 1.34m^2 - 3.58m^3)$	
	$(1-28.72m+228.2m^2-2)$	39.9m³)		

Table 2 Comparison of best isothermal policy (BIP) and optimal temperature policy (OTP)

System	<i>X_n</i> *	End time, t_f					Initial initiator concentration, I_0		Temperature range	
		BIP (s)	OTP (s)	% re- duction	<i>t_f</i> * (s)	% re- duction	BIP g mol ⁻¹	OTP g mol ¹	BIP (K)	OTP (K)
	2000	327	260	20.5	278	15.0	0.203 x 10 ⁻²	0.195 x 10 ²	388.5	382.1-423.6
	5000	1254	974	22.3	1084	13.6	0.813×10^{-3}	0.780×10^{-3}	375.8	370.1-418.5
MMA	10 000	3465	2680	22.7	2975	14.1	0.407×10^{-3}	0.390×10^{-3}	366.7	361.3-411.0
	20 000	9577	7490	21.8	8270	13.6	0.203×10^{-3}	0.195 x 10 ³	358.0	352.8-393.3
	50 000	36 719	28 500	22.4	31 800	13.4	0.813 x 10 ⁻⁴	0.780 x 10 ⁴	347.1	342.3-384.7
VAC	1.0 x 10 ⁷	965	840	13.0	904	6.3	0.526 x 10 ⁻⁶	0.455 x 10 ⁻⁶	376.8	373.4-410.5
	2.0×10^7	2163	1880	13.1	2030	7.1	0.263×10^{-6}	0.227×10^{-6}	370.2	367.0-405.2

 t_f^* : End time, t_f , in optimal policy at best l_0 which is obtained from BIP

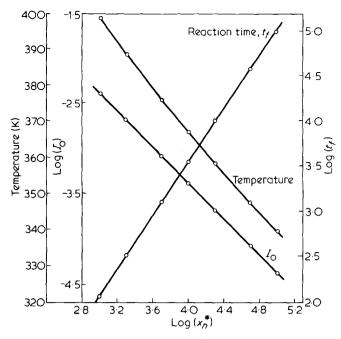


Figure 1 Dependence of temperature (T), initial initiator concentration (I_0) and reaction end time (t_f) on number average chain length (X_n^*) in best isothermal policy

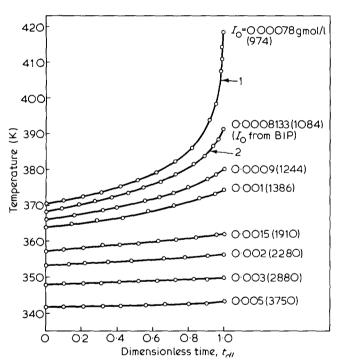


Figure 2 Temperature profiles at various values of I_0 for $X_n^* = 5000$. System: methylmethacrylate, figures in parentheses are t_f in seconds

 (t_f) is decreasing whereas the initiator conversion $c(t_f)$ is increasing, the latter approaching finally to a value unity at a value of $I_0 = 7.8 \times 10^{-4}$ below which there is no possibility of attaining the required properties. This is the point of dead-end polymerization. Similar profiles and similar conclusions are observed for all X_n^* 's under study. Figure 4 gives the optimum temperature profiles at optimum I_0 for various values of X_n^* . It can be seen that for larger chain lengths, lower operating temperatures are required.

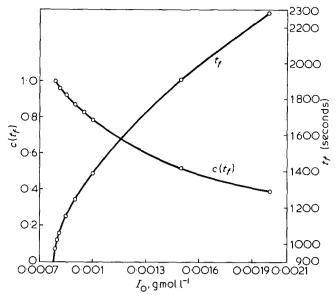


Figure 3 Dependence of t_f and $c(t_f)$ on I_0 using optimal temperature policies for $X_0^* = 5000$. System: methylmethacrylate

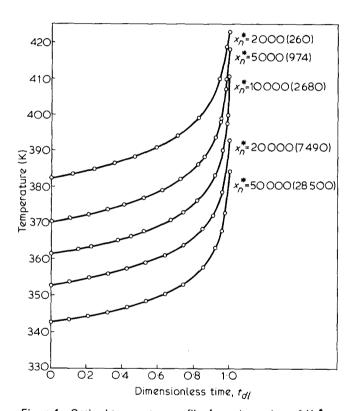


Figure 4 Optimal temperature profiles for various values of X_n^* . System: methylmethacrylate, figures in parentheses are t_f in seconds

The temperature profiles and the variation of the t_f and $c(t_f)$ with I_0 for the vinyl acetate system are observed to be similar to the MMA system. The final optimum results for the VAC system are included in Table 2.

Comparison of the two policies

It can be seen from Table 2 that there is considerable reduction in t_f when optimal policy is adopted. The reduction is in the range of 20–23% for MMA system, whereas for VAC system it is 13–14%. It can also be observed that even the optimal temperature policy at I_{ob}

gives 13-15% reduction in t_f for the MMA system and 6-7% reduction for VAC system. Regarding the initial initiator concentration (I_0) , lower values of I_0 are required by OTP then by BIP. However, both the values are nearly same.

Comparison of the two systems MMA and VAC

From the above discussion, it can be noted that the OTP gives better results for MMA than for VAC. Kinetics is going to play an important role in this respect. However, the chain transfer reaction which is not considered in the present study is more pronounced in the VAC system than in the MMA system.

CONCLUSIONS

(1a) In the case of best isothermal policy (BIP), the number average chain length (X_n^*) and initial initiator concentration (I_0) follow linear relationship on a log-log plot. Similar relation exists between X_n^* and t_f .

(1b) For larger chain lengths lower values of temperature and I_0 are required.

(2) When compared to BIP, the optimal temperature policy makes it possible to get more than 20% reduction in reaction time in the case of MMA system and about 13% reduction in the case of VAC system.

(3) The optimum temperature policies for both the systems are of increasing temperatures with the lowest possible values of initial initiator concentration, I_{0a} .

REFERENCES

- Denn, M. M. 'Optimization by variational methods', McGraw-Hill book Co. Inc., New York, 1970
- Hicks, J., Mohan, A. and Ray, W. H. Can. J. Chem. Eng. 1969, 47, 590
- Sacks, M. E., Lee, S.-I. and Biesenberger, J. A. Chem. Eng. Sci. 1972,
- Chen, S.-A. and Jeng, W.-F. Chem. Eng. Sci. 1978, 33, 735
- Ham, G. E. 'Vinyl polymerization', Vol. I, Part I, Marvel Dekker, Inc., New York, 1967
- Flory, P. J. 'Principles of polymer chemistry', Cornell University Press, Ithaca, N.Y., 1953
- Beveredge, G. S. G. and Schechter, R. S. 'Optimization theory and practice', McGraw-Hill book Co., Inc., New York, 1970
- Encyclopedia of polymer science and technology, Ed. Bikales, N. M., Vol. 15, John Wiley and Sons, Inc., New York, 1971
- Fent, B. L. and Pasika, W. Can. J. Chem. Eng. 1960, 38, 1865

GLOSSARY

а	fI_0^n/M_0			
A_d, A_p, A_t	frequency	factor	for	initiator
	decompositi	on, pr	opagatio	on and
	termination	, respective	ely	
В	$M_0 m^* / f X_n^*$			

	The state of the s
<i>C</i>	initiator conversion $(I - I/I_0)$
E_d, E_p, E_t	activation energies for initiator
•	decomposition, propagation and
	termination, respectively
f	initiator efficiency
-	gel effect function $g(m) = (k_t/k_{tO})^{0.5}$
g	
H	Hamiltonian defined by equation (17)
I	initiator concentration
I_0	initial initiator concentration
I_0	lower limit of I_0
$\overline{k_1}, k_2$	lumped kinetic parameters,
1 2	corresponding frequency factors being
	A_1, A_2 and energies of activation E_1, E_2
	respectively
k_d, k_i, k_p	kinetic constants for initiator
	decomposition, initiation and
	propagation, respectively
k_{tc}, k_{td}	kinetic constants for termination by
	combination and disproportionation,
	respectively
k_t	$k_{tc} + k_{td} = k_{t0}(y).g^2(m)$
m	monomer conversion
	the monomer conversion from which the
m_1	
*	gel effect becomes significant
m*	target monomer conversion
M_0	initial monomer concentration
M	monomer concentration
M_x, M_y, M_{x+y}	concentration of dead polymer of chain
	lengths x , y , and $x + y$, respectively
P_x, P_y	concentration of growing polymer of
· · · · ·	chain length x, y , respectively
R	concentration of primary radicals
R_a	gas constant
t t	time
t _{dl}	dimensionless time, t/t_f
	reaction end time
T = T	
	absolute temperature
$\frac{T_{s}\tilde{T}}{T_{s}}$	lower and upper bounds on temperature
I_{s}	optimum temperature
v	k_{tc}/k_t
$X_n \\ X_n^*$	number average chain length
X_n^*	target number average chain length
y	$1/R_gT$
<u>y</u> _	the limit of y, corresponding to the lower
-	bound of the temperature, T
$ar{v}$	the limit of y, corresponding to the upper
3	bound of the temperature, \bar{T}
v	stationary temperature policy. Solution
y_s	stationary temperature poncy. Solution

Greek symbols:

ν	2-v
λ_i	adjoint variable
ξi	dimensionless ith moment of the dead
,	polymer molecular weight distribution

to $\partial H/\partial v = 0$